Crystals were obtained from methanol solution by slow evaporation. A parallelepiped crystal fragment was cut from a larger crystal and mounted in a Lindemann capillary to prevent its sublimation. During the data collection intensities of the standard reflections ($\overline{221}$, 004 and 400) dropped by up to 89% of their initial values. Data were corrected for crystal decay.

We thank Professor Herbert Mayr, Technische Hochschule Darmstadt, for synthetic hints.

Lists of structure factors, anisotropic thermal parameters, H-atom coordinates, torsion angles and ring-puckering parameters have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 55627 (28 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England. [CIF reference: AB1017]

References

- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.
 Ilczyszyn, M. M., Lis, T., Baran, J. & Ratajczak, H. (1992). J. Mol. Struct, 265, 293–310.
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Karban, J., McAtee, J. L., Belew, J. S., Mullica, D. J., Milligan, W. O. & Korp, J. (1978). J. Chem. Soc. Chem. Commun. pp. 729–732.
- Kuma Diffraction (1989). Kuma KM4 software. User's Guide, version 3.1. Kuma Diffraction, Wrocław, Poland.
- Mayr, H. (1991). Personal communication.
- Miljković, D., Ćanadi, D., Petrović, J., Stanković, S., Ribár, B., Argay, Gy. & Kálmán, A. (1984). *Tetrahedron Lett.* 25, 1403–1406.
- Miura, M., Ikegami, A., Nojima, M., Kusabayashi, S., McCullough, K.
- J. & Nagase, S. (1983). J. Am. Chem. Soc. **105**, 2414–2426. Mullica, D. F., Korp, J. D., Milligan, W. O., Belew, J. S., McAtee, J. L. Jr & Karban, J. (1979). J. Chem. Soc. Perkin Trans. 2, pp. 1703–1707.
- Oliver, J. D., Mullica, D. F., Milligan, W. O., Karban, J., McAtee, J. L.

Jr & Belew, J. S. (1979). Acta Cryst. B35, 2273-2276.

Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.

Syntex (1976). XTL/E-XTL Structure Determination System Operation Manual. Syntex Analytical Instruments, 10040 Bubb Road, Cupertino, California 95014, USA.

Acta Cryst. (1993). C49, 402-404

Structure of 1,3-Xylyl-(18-crown-5)– Ammonium Catecholborate (1/1)

Richard Goddard, Christof M. Niemeyer and Manfred T. Reetz

Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-4330 Mülheim a.d. Ruhr, Germany

(Received 23 July 1992; accepted 5 October 1992)

Abstract

In the title compound, 3,6,9,12,15-pentaoxabicyclo-[15.3.1]henicosa-1(21),17,19-triene-ammonium bis(1,2-

0108-2701/93/020402-03\$06.00

benzenediolato)borate (1/1), the ammonium cation is hydrogen bonded by three of its H atoms to the crown ether, and by the remaining H atom to the O atom of the catecholborate anion. Thus the crown ether competes favourably with the catechol ligands for hydrogen bonding with the ammonium cation.

Comment

The title compound (1) was obtained as a by-product of the reaction of ammonia with the crown ether borate 1,3-xylyl-(18-crown-5)-2-catecholborate (2) (Reetz, Niemeyer, Hermes & Goddard, 1992). Dry ammonia was passed through a dry solution of 0.6 mmol of the crown ether borate dissolved in 10 ml of dichloromethane for 30 s at 273 K. The solution immediately became cloudy. The solution was then diluted fivefold and filtered to remove any insoluble deposits. Careful layering with diethyl ether resulted in the formation of crystals of the title compound together with those of the NH₃ adduct of the crown ether borate (Reetz, Niemeyer, Hermes & Goddard, 1992). We report here the structure of the title compound.

The results of the structure analysis are summarized in Fig. 1 which shows an ion-pair complex comprising ammonium catecholborate attached to a macrocyclic crown ether. The ammonium cation is bonded on one side by three hydrogen bonds to a 1,3-xylyl-(18-crown-5) polyether and on the other through a single hydrogen bond to a catecholborate anion. Interestingly, the ammonium cation forms hydrogen bonds preferentially with the O atoms of the crown ether in spite of the fact that the catecholborate anion is negatively charged and carries four O atoms that are eminently suited to form hydrogen bonds. By way of comparison, ammonium tetrafluoroborate crystallizes as a three-dimensional structure with each H atom of the ammonium cation hydrogen bonded, albeit weakly (Pendred & Richards, 1955), to an F atom of a neighbouring tetrafluoroborate anion (Clark & Lynton, 1969; Van Rensburg & Boeyens, 1972; Stromme, 1974). The crown ether thus competes effectively with the borate for hydrogen bonding. This is reflected in the similar N···O hydrogen-bonded distances to the crown ether and the borate anion $[N \cdot \cdot \cdot O1 2.978(4), N \cdot \cdot \cdot O3 2.827(4),$ N···O5 2.999(4), N···O8 2.827(4) Å]. The H···O distances are also comparable [H1···O1 1.98(4), H3···O3 2.00(3), H2 \cdots O5 2.13(3), H4 \cdots O8 1.98(4) Å] although

© 1993 International Union of Crystallography

these are less well determined. Although O2 and O4 in the macrocycle do not appear to form hydrogen bonds with the ammonium cation, the $N \cdot \cdot \cdot O$ distances to these atoms are not appreciably longer [N···O2 3.042(4), N···O4 3.061(4) Å] and so a restricted rotation of the ammonium cation cannot be ruled out. The proximity of the ammonium cation to O8 results in a lengthening of the B-08 bond which at 1.502(4) Å is significantly longer than the other B-O distances in the anion [mean 1.470(3) Å]. The catecholborate anion has also been reported in the structure of triethylammonium catecholborate catechol solvate (Mohr, Heller, Timper & Woller, 1990). Examination of the interatomic non-bonding distances indicates that there is an additional weak interaction between the borate anion and the crown ether through O7 and H4a [O7...C4 3.405(5), H4a-C4 (calculated) 0.95 Å]. The mean Csp^3 — Csp^3 bond length in the macrocyclic ring is 1.477(8) Å and the mean C—O bond length is 1.416(12) Å, in agreement with similar molecules containing 18-crown-5 macrocyclic ethers (Browne, Ferguson, McKervey, Mulholland, O'Connor & Parvez, 1985). The remaining bond lengths and angles are as expected.

Fig. 1. View of the molecular structure. Thermal ellipsoids are shown at 50% probability levels; H atoms attached to N are drawn as circles of arbitrary radius.

Experimental

Crystal data

$C_{16}H_{24}O_5.H_4N^+.C_{12}H_8BO_4^-$	Mo $K\alpha$ radiation
$M_r = 541.4$	$\lambda = 0.71069 \text{ Å}$
Monoclinic	Cell parameters from 25
$P2_1/c$	reflections
a = 14.930 (2) Å	$\theta = 9.5 - 17.2^{\circ}$
b = 11.193 (1) Å	$\mu = 0.088 \text{ mm}^{-1}$
c = 17.211 (1) Å	T = 293 K
$\beta = 99.896(5)^{\circ}$	Prism
$V = 28335 (4) Å^3$	$0.42 \times 0.42 \times 0.25$ mm
Z = 4	Colourless
$D_r = 1.27 \text{ Mg m}^{-3}$	

Data collection

$\theta_{\rm max} = 27.41^{\circ}$
$h = -19 \rightarrow 19$
$k = 0 \rightarrow 14$
$l = 0 \rightarrow 22$
3 standard reflections
frequency: 120 mir
intensity variation:

Refinement

08

09

Ν Cl C2 C3 C4 C5 C6

C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18 C19 C20 C21

Refinement on F	Extinction correction: not
Final $R = 0.060$	applied
wR = 0.059	Atomic scattering factors
S = 1.97	from International Tables
3239 reflections	for X-ray Crystallogra-
368 parameters	phy [1974, Vol. IV, Tables
$w = 1/[\sigma^2(F)]$	2.2A (C, B, N, O) and
$(\Delta/\sigma)_{\rm max} = 0.71$	2.2C (H)]
$\Delta \rho_{\rm max} = 0.19 \ {\rm e} \ {\rm \AA}^{-3}$	
$\Delta \rho_{\rm min} = -0.73 \ {\rm e} \ {\rm \AA}^{-3}$	

Data collection: Enraf-Nonius CAD-4. Cell refinement: LSCELD (Davis, 1969). Data reduction: DATAP (Coppens, Leiserowitz & Rabinovich, 1965). Program(s) used to solve structure: SHELXS86 (Sheldrick, 1990). Program(s) used to refine structure: GFLMX (modified ORFLS; Busing, Martin & Levy, 1962). Molecular graphics: ORTEP (Johnson, 1976). Software used to prepare material for publication: DAESD (Davis & Harris, 1970).

Table 1. Fractional atomic coordinates and equivalent isotropic thermal parameters $(Å^2)$

$$U_{\rm eq} = (1/3) \sum_i \sum_j U_{ij} a_i^* a_j^* \mathbf{a}_i \cdot \mathbf{a}_j.$$

x	у	z	U_{eq}
0.7594 (1)	-0.3403 (2)	0.8695 (1)	0.063 (2)
0.5947 (1)	-0.2134 (2)	0.8355(1)	0.071 (2)
0.6096 (2)	0.0396 (2)	0.8172(1)	0.070 (2)
0.7699 (2)	0.1488 (2)	0.7903 (1)	0.068 (2)
0.9342(1)	0.0268 (2)	0.8371 (1)	0.067 (2)
0.7289(1)	0.1140 (2)	0.1184 (1)	0.057(1)
0.6231 (1)	0.0243 (2)	0.0199 (1)	0.057(1)
0.7733 (1)	-0.0679 (2)	0.0557 (1)	0.055(1)
0.6693 (1)	-0.0847 (2)	0.1428 (1)	0.055 (1)
0.7700 (2)	-0.0765 (3)	-0.1090 (2)	0.051 (2)
0.8267 (3)	-0.4105 (3)	0.8421 (2)	0.072 (3)
0.6729 (3)	-0.3955 (4)	0.8594 (2)	0.080 (3)
0.6079 (3)	-0.3134 (5)	0.8870 (2)	0.086 (3)
0.5308 (2)	-0.1298 (4)	0.8550 (2)	0.086 (3)
0.5270 (2)	-0.0272 (5)	0.8004 (2)	0.087 (3)
0.6096 (3)	0.1429 (5)	0.7722 (2)	0.093 (3)
0.6911 (3)	0.2144 (4)	0.8006 (2)	0.087 (3)
0.8513 (3)	0.2093 (3)	0.8160 (2)	0.084 (3)
0.9288 (3)	0.1378 (4)	0.7973 (2)	0.080 (3)
1.0080 (2)	-0.0444 (4)	0.8212 (2)	0.083 (3)
1.0014 (2)	-0.1660 (3)	0.8553 (2)	0.066 (3)
1.0689 (2)	-0.2123 (5)	0.9126 (3)	0.085 (3)
1.0602 (3)	-0.3241 (5)	0.9428 (3)	0.094 (3)
0.9832 (3)	-0.3887 (4)	0.9186 (2)	0.080 (3)
0.9141 (2)	-0.3450 (3)	0.8631 (2)	0.061 (2)
0.9252 (2)	-0.2347 (3)	0.8298 (2)	0.060 (2)
0.6797 (2)	0.1981 (3)	0.0723 (2)	0.050 (2)
0.6869 (2)	0.3192 (3)	0.0790 (2)	0.065 (3)
0.6262 (3)	0.3873 (3)	0.0273 (3)	0.075 (3)
0.5607 (3)	0.3358 (3)	-0.0287 (2)	0.068 (3)
0.5542 (2)	0.2111 (3)	-0.0358 (2)	0.059 (2)

cy: 120 min

y variation: none

REGULAR STRUCTURAL PAPERS

C22 C23 C24 C25 C26 C27 C27 C28 B H1	0.6154 (2) 0.7774 (2) 0.8326 (2) 0.8221 (3) 0.7597 (3) 0.7052 (2) 0.7149 (2) 0.6980 (2) 0.767 (2)	$\begin{array}{c} 0.1452 (3) \\ -0.1795 (3) \\ -0.2724 (3) \\ -0.3780 (3) \\ -0.3881 (3) \\ -0.2932 (3) \\ -0.1882 (3) \\ -0.0025 (4) \\ -0.164 (4) \end{array}$) 0.0140 (2)) 0.0887 (2)) 0.0766 (2)) 0.1168 (2)) 0.1666 (2)) 0.1788 (2)) 0.1398 (2)) 0.0850 (2) -0.124 (2)	0.047 (2) 0.048 (2) 0.066 (3) 0.078 (3) 0.075 (3) 0.061 (2) 0.047 (2) 0.050 (2) 0.10 (1)
H2 H3 H4	0.821 (2) 0.724 (2) 0.774 (2)	0.053 (3) 0.040 (3) 0.070 (3)	-0.123 (2) -0.131 (2) -0.057 (2)	0.07 (1) 0.06 (1) 0.06 (1)
•	Table 2. G	eometric p	oarameters (Å, °)	
$\begin{array}{c} 01-C1\\ 01-C2\\ 02-C3\\ 02-C4\\ 03-C5\\ 03-C6\\ 04-C7\\ 04-C8\\ 05-C9\\ 05-C10\\ 06-C17\\ 06-B\\ 07-C22\\ 07-B\\ 08-C23\\ 08-B\\ 09-C28\\ 09-B\\ N-H1\\ N-H2\\ N-H3\\ N-H4\\ C1-C15\\ C2-01-C1\\ C4-02-C3\\ C6-03-C5\\ C8-04-C7\\ C10-05-C\\ B-06-C17\\ B-07-C22\\ B-08-C23\\ B-09-C28\\ H4-N-H3\\ H1\\ H3-N-H2\\ H3-N-H1\\ H3-N-H2\\ H3-N-H1\\ H3-N-H2\\ H3-N-H1\\ H2-N-H1\\ H3-N-H2\\ H3-N-H1\\ H2-N-H1\\ H3-N-H2\\ H3-N-H1\\ H2-N-H1\\ H3-N-H2\\ H3-N$	1 1 <td< td=""><td>Alig (5) .419 (5) .415 (5) .421 (5) .421 (5) .421 (5) .421 (5) .425 (5) .393 (5) .425 (5) .396 (5) .425 (4) .425 (4) .425 (4) .362 (4) .447 (4) .369 (4) .362 (4) .425 (4) .362 (4) .425 (4) .362 (4) .362 (4) .362 (4) .362 (4) .362 (4) .362 (4) .362 (4) .362 (4) .362 (4) .362 (4) .02 (4) .388 (3) .033 (3) .88 (3) .13.7 (3) .113.7 (3) .113.8 (3) .113.8 (3) .113.8 (3) .110 (3) .111 (3) .103 (3) .106.5 (3) .109.1 (3)</td><td>parameters (Å, °) C2-C3 C4-C5 C6-C7 C8-C9 C10-C11 C11-C12 C11-C16 C12-C13 C13-C14 C14-C15 C15-C16 C17-C18 C17-C18 C17-C22 C20-C21 C20-C21 C20-C21 C23-C24 C23-C28 C24-C25 C25-C26 C26-C27 C27-C28 C16-C15-C1 C15-C16 C16-C15-C1 C16-C15-C1 C15-C16-C11 C22-C17-C18 C22-C17-C18 C22-C17-C18 C22-C17-C18 C12-C15-C1 C15-C16-C11 C12-C15-C1 C15-C16-C11 C22-C17-C18 C22-C17-C6 C19-C18-C17 C19-C18-C17 C19-C18-C17 C19-C18-C17 C20-C19-C18 C17-C22-C17 C21-C22-C17-C24 C22-C24-C23-C24 C22-C24-C23-C24 C22-C24-C25-C24-C25 C23-C24-C25-C24-C25 C24-C25-C24-C25-C24 C25-C24-C25-C24-C25-C24 C25-C24-C25-C25-C24 C25-C24-C25-C25-C24-C25-C24-C25-C25-C24-C25-C25-C24-C25-C25-C24-C25-C25-C24-C25-C25-C24-C25-C25-C24-C25-C25-C24-C25-C25-C24-C25-C25-C24-C25-C25-C24-C25-C25-C24-C25-C25-C24-C2</td><td>$\begin{array}{c} 1.474\ (6)\\ 1.478\ (7)\\ 1.468\ (6)\\ 1.487\ (6)\\ 1.487\ (6)\\ 1.385\ (6)\\ 1.381\ (5)\\ 1.371\ (7)\\ 1.361\ (6)\\ 1.370\ (5)\\ 1.384\ (5)\\ 1.370\ (5)\\ 1.384\ (5)\\ 1.396\ (4)\\ 1.385\ (5)\\ 1.377\ (6)\\ 1.403\ (5)\\ 1.377\ (6)\\ 1.403\ (5)\\ 1.377\ (6)\\ 1.375\ (5)\\ 1.376\ (6)\ (5)\ (5)\ (5)\ (5)\ (5)\ (5)\ (5)\ (5$</td></td<>	Alig (5) .419 (5) .415 (5) .421 (5) .421 (5) .421 (5) .421 (5) .425 (5) .393 (5) .425 (5) .396 (5) .425 (4) .425 (4) .425 (4) .362 (4) .447 (4) .369 (4) .362 (4) .425 (4) .362 (4) .425 (4) .362 (4) .362 (4) .362 (4) .362 (4) .362 (4) .362 (4) .362 (4) .362 (4) .362 (4) .362 (4) .02 (4) .388 (3) .033 (3) .88 (3) .13.7 (3) .113.7 (3) .113.8 (3) .113.8 (3) .113.8 (3) .110 (3) .111 (3) .103 (3) .106.5 (3) .109.1 (3)	parameters (Å, °) C2-C3 C4-C5 C6-C7 C8-C9 C10-C11 C11-C12 C11-C16 C12-C13 C13-C14 C14-C15 C15-C16 C17-C18 C17-C18 C17-C22 C20-C21 C20-C21 C20-C21 C23-C24 C23-C28 C24-C25 C25-C26 C26-C27 C27-C28 C16-C15-C1 C15-C16 C16-C15-C1 C16-C15-C1 C15-C16-C11 C22-C17-C18 C22-C17-C18 C22-C17-C18 C22-C17-C18 C12-C15-C1 C15-C16-C11 C12-C15-C1 C15-C16-C11 C22-C17-C18 C22-C17-C6 C19-C18-C17 C19-C18-C17 C19-C18-C17 C19-C18-C17 C20-C19-C18 C17-C22-C17 C21-C22-C17-C24 C22-C24-C23-C24 C22-C24-C23-C24 C22-C24-C25-C24-C25 C23-C24-C25-C24-C25 C24-C25-C24-C25-C24 C25-C24-C25-C24-C25-C24 C25-C24-C25-C25-C24 C25-C24-C25-C25-C24-C25-C24-C25-C25-C24-C25-C25-C24-C25-C25-C24-C25-C25-C24-C25-C25-C24-C25-C25-C24-C25-C25-C24-C25-C25-C24-C25-C25-C24-C25-C25-C24-C25-C25-C24-C25-C25-C24-C2	$\begin{array}{c} 1.474\ (6)\\ 1.478\ (7)\\ 1.468\ (6)\\ 1.487\ (6)\\ 1.487\ (6)\\ 1.385\ (6)\\ 1.381\ (5)\\ 1.371\ (7)\\ 1.361\ (6)\\ 1.370\ (5)\\ 1.384\ (5)\\ 1.370\ (5)\\ 1.384\ (5)\\ 1.396\ (4)\\ 1.385\ (5)\\ 1.377\ (6)\\ 1.403\ (5)\\ 1.377\ (6)\\ 1.403\ (5)\\ 1.377\ (6)\\ 1.375\ (5)\\ 1.376\ (6)\ (5)\ (5)\ (5)\ (5)\ (5)\ (5)\ (5)\ (5$
C6-C704 C9-C804 C8-C9-05 C11-C10-4 C16-C11-4 C16-C11-4 C12-C11-4 C12-C11-4 C13-C12-4 C14-C13-4 C15-C14-4	05 C12 C10 C10 C11 C12 C13	109.4 (3) 109.7 (3) 110.4 (3) 109.2 (3) 118.5 (4) 119.3 (3) 122.2 (3) 120.5 (4) 120.0 (4) 121.2 (4)	C27—C28—C23 C27—C28—O9 C23—C28—O9 O9—B—O8 O9—B—O7 O9—B—O6 O8—B—O7 O8—B—O6 O7—B—O6	120.5 (3) 128.3 (3) 111.2 (3) 104.1 (3) 111.8 (3) 113.6 (3) 111.0 (3) 111.2 (3) 105.3 (3)

Data were corrected for Lorentz and polarization effects. $\sigma(F)$ was calculated from $[\sigma(I)^2 + (Ik)^2]^{1/2}/2F$, where k = 0.02. The H atoms attached to the N atom were located on a difference Fourier map and refined with isotropic temperature factors. The remaining H atoms were fixed at calculated positions $[d(C-H) = 0.95 \text{ Å}; U_H = 0.05 \text{ Å}^2]$.

Lists of structure factors, anisotropic thermal parameters, H-atom coordinates and complete geometry have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 55685 (28 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England. [CIF reference: AB1034]

References

- Browne, C. M., Ferguson, G., McKervey, M. A., Mulholland, D. L., O'Connor, T. & Parvez, M. (1985). J. Am. Chem. Soc. 107, 2703– 2712.
- Busing, W. R., Martin, K. O. & Levy, H. A. (1962). ORFLS. Report ORNL-TM-305. Oak Ridge National Laboratory, Tennessee, USA.
- Clark, M. J. R. & Lynton, H. (1969). Can. J. Chem. 47, 2579-2586.
- Coppens, P., Leiserowitz, L. & Rabinovich, D. (1965). Acta Cryst. 18, 1035-1038.
- Davis, R. E. (1969). LSCELD. Program for the refinement of cell parameters. Roswell Park Memorial Institute, New York, USA.
- Davis, R. E. & Harris, D. R. (1970). DAESD. Roswell Park Memorial Institute, New York, USA.
- Johnson, C. K. (1976). ORTEP. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Mohr, S., Heller, G., Timper, U. & Woller, K.-H. (1990). Z. Naturforsch. Teil B, 45, 308-322.
- Pendred, D. & Richards, R. E. (1955). Trans. Faraday Soc. 51, 468-475.
- Reetz, M. T., Niemeyer, C. M., Hermes, M. & Goddard, R. (1992). Angew. Chem. 104, 1054–1056.
- Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
- Stromme, K. O. (1974). Acta Chem. Scand. Ser. A, 28, 546.
- Van Rensburg, D. J. J. & Boeyens, J. C. A. (1972). J. Solid State Chem. 5, 79.

Acta Cryst. (1993). C49, 404-406

Structure of 1:1 Clathrate between Tris-(2,3-naphthalenedioxy)cyclotriphosphazene and *p*-Xylene

Koji Kubono, Noriko Asaka, Seiji Isoda and Takashi Kobayashi

Institute for Chemical Research, Kyoto University, Uji, Kyoto 611, Japan

TOORU TAGA

Faculty of Pharmaceutical Sciences, Kyoto University, Sakyo, Kyoto 606, Japan

(Received 28 April 1992; accepted 24 August 1992)

Abstract

The host molecule lies on the crystallographic twofold axis. The centroid of the guest, p-xylene, is located at a center of symmetry. The host forms a cage-type 1:1 clathrate with p-xylene. The p-xylene is

0108-2701/93/020404-03\$06.00

© 1993 International Union of Crystallography

404